

Dreamfleet 2000 CESSNA MODEL 172 P

THIS MANUAL IS INTENDED FOR FLIGHT SIMULATION USE ONLY. NO RESPONSIBILITY FOR TYPOGRAPHIC OR OTHER ERRORS IS TAKEN.

I would like to extend my compliments and thanks to Alex Franzen, who expended a great deal of time and talent to produce this manual, based on the actual C-172P POH, for the DF2000 / FSD Cessna 172P.

It is an outstanding effort! This manual is intended for use along with the detailed documentation originally provided with our C-172P panel, and also makes reference to certain features of our panel.

It is people such as Alex who make this hobby the great one that it is, and we all hope you enjoy many happy hours flying the 172, with this manual as your guide.

Happy Flying!

Louis J Betti Executive Director - DreamFleet 2000

SECTION 1

Introduction	1
Performance-Specifications	1
•Dimensions	2
Descriptive Data	3
-Engine	3
-Propeller	3
-Fuel	3
-Oil	3
-Maximum Certificated Weight	4
-Standard Airplane Weight	4

INTRODUCTION

This handbook includes the material required to be furnished

to the pilot by CAR Part 3. Section 1 provides basic data and information of general interest.

PERFORMANCE-SPECIFICATIONS

SPEED:

Maximum at sea level	123 Knots	NOTE:
Cruise, 75% power at 8000 ft	120 Knots	The performance figures are
CRUISE: Recommended lean mixture with fuel allowance		based on the indicated weights,
for engine start, takeoff, climb and 45 minutes reserve		standard atmospheric conditions,
75% power at 8000 ft	440 NM	and no wind They are calculated
40 gallons usable fuel	3.8 HRS	values derived from flight tests
75% power at 8000 ft	585 NM	conducted by the Cessna Aircraft
50 gallons usable fuel	5.0 HRS	Company under carefully
75% power at 8000 ft	755 NM	documented conditions and will
62 gallons usable fuel	6.4 HRS	vary with individual airplanes
Maximum Range at 10000 ft	520 NM	flight performance
40 gallons usable fuel	5.6 HRS	ingite performance.
Maximum Range at 10000 ft	680 NM	
50 gallons usable fuel	7.4 HRS	
Maximum Range at 10000 ft	875 NM	
62 gallons usable fuel	9.4 HRS	
RATE OF CLIMB AT SEA LEVEL	700 FPM	
SERVICE CEILING	13000 FT	
TAKEOFF PERFORMANCE		
Ground Roll	890 FT	
Total Distance Over 50-ft Obstacle	1625 FT	
LANDING PERFORMANCE (KCAS)		
Ground Roll	540 FT	
Total Distance Over 50-ft Obstacle	1280 FT	
STALL SPEESDS (KCAS)		
Flaps Up, Power Off	51 Knots	
Flaps Down, Power Off	46 Knots	
MAXIMUM WEIGHT		
Ramp	2407 LBS	
Takeoff or Landing	2400 LBS	
STANDARD EMPTY WEIGHT		
Skyhawk	1414 LBS	
Skyhawk II	1440 LBS	
MAXIMUM USEFUL LOAD		
Skyhawk	993 LBS	
Skyhawk II	967 LBS	
BAGGAGE ALLOWANCE	120 LBS	
WING LOADING: Pounds/Sq Ft	13.8	
POWER LOADING: Pounds/HP	15.0	
FUEL CAPACITY		
Standard Tanks	43 GAL	
Long Range Tanks	54 GAL	
Integral Tanks	68 GAL	
PROPELLER: Fixed Pitch, Diameter	75 IN	

DIMENSIONS

DESCRIPTIVE DATA

ENGINE

Number of engines: 1
Engine Manufacturer: Avco Lycoming
Engine Model Number: O-320-D2J

- Engine Type: Normally

aspirated, direct-drive, air-cooled, horizontally opposed, carburetor equipped, four-cylinder engine with 319.8 cu.in. displacement - Horsepower Rating and Engine Speed: 160 rated HP at 2700 RPM

PROPELLER

- Propeller Manufacturer:	- Number of Blades: 2
McCauley Accessory Division.	- Propeller Diameter, Maximum:
- Propeller Model Number:	75 inches, Minimum: 74 inches.
1C160/DTM7557	- Propeller Type: Fixed Pitch

FUEL

Approved Fuel Grades: 100LL Grade Aviation Fuel (Blue) 100 (Formerly 100/130) Grade Aviation Fuel (Green)

Fuel Capacity:

Standard Tanks: Total Capacity: 43 gallons Total Capacity Each Tank: 21.5 gallons Tatoal Usable: 40 gallons. Long Range Tanks: Total Capacity: 54 gallons Total Capacity Each Tank: 27 gallons Tatoal Usable: 50 gallons. Integral Tanks: Total Capacity: 68 gallons Total Capacity Each Tank: 34 gallons Tatoal Usable: 62 gallons.

OIL

Oil Grade (Specififications): MIL-L-6082 Aviation Grade Straight Mineral Oil: Use to replenish supply during first 25 hours and at the forst 25-hour oil change. Continue to use until a total of 50 hours has accumulated or oil consumption has stabilized. MIL-L-22851 Ashless Dispersant Oil: This oil must be used after first 50 hours or oil consumption has stabilized.

NOTE:

Isopropyl alcohol or ethylene glycol monomethyl ether may be added to the fuel supply.

NOTE:

To ensure maximum fuel capacity when refueling and minimize cross-feeding when parked on a sloping durface, place the fuel selector valve in either LEFT or RIGHT position.

MAXIMUM CERTIFICATED WEIGHT

-Ramp

Normal Category: 2407 lbs Utility Category: 2107 lbs -Takeoff Normal Category: 2400 lbs

Utility Category: 2100 lbs

-Landing Normal Category: 2400 lbs Utility Category: 2100 lbs NOTE: The maximum combined weight capacity for baggage areas 1 and 2 is 120 lbs

STANDARD AIRPLANE WEIGHT

-Standard empty weight: Skyhawk: 1414 lbs Skyhawk II: 1440 lbs -Maximum useful load: Skyhawk Normal Category: 993 lbs Utility Category: 693 lbs Skyhawk II Normal Category: 967 lbs Utility Category: 667 lbs

SECTION 2 TABLE OF CONTENTS

•Airspeed Limitations	
•Airspeed Indicator Markings	1
•Power Plant Limitations	2
 Power Plant Instrument Markings 	2
•Weight Limits	
-Normal Category	3
-Utility Category	3
•Center Of Gravity Limits	
-Normal Category	3
-Utility category	3
•Maneuver Limits	
-Normal Category	3
-Utility Category	4
•Flight Load Factor Limits	
-Normal Category	4
-Utility Category	4
•Kinds of Operational Limits	5
•Fuel Limitations	5

AIRSPEED LIMITATIONS

Airspeed Limitations and their operational significance are shown in figure 2-1. Maneuvering speed shown apply to normal 102 category operations. The utility category maneuvering speed is

2 KIAS at 2100 pound

	SPEED	KCAS	KIAS	REMARKS
V _{NE}	Never Exceed Speed	152	158	Do not exceed this speed in any operation
V _{NO}	Maximum Structural Cruising Speed	123	127	Do not exceed this speed except in smooth air, and then only with caution
VA	Maneuvering Speed:			
	2400 Pounds	97	99	Do not make full or abrupt
	2000 Pounds	91	92	control movements above
	1600 Pounds	81	82	this speed
VFE	Maximum Flaps Extended			
	Speed:			
	10° Flaps	108	110	Do not exceed this speed
	10° - 30° Flaps	84	85	with flaps down
	Maximum Window Open	152	158	Do not exceed this speed
	Speed			with windows open
	Figure 2-1. Airspeed Limitations			

AIRSPEED INDICATOR MARKINGS

Airspeed Indicator markings and their color code significance

areshown in figure 2-2.

MARKING	KIAS VALUE Or Range	SIGNIFICANCE
White Arc	33 - 85	Full Flap Operating Range. Lower limit is maximum weight V_{S0} in landing configuration. Upper limit is maximum speed permissible with flaps extended.
Green Arc	44 - 127	Normal Operating Range. Lower limit is maximum weight V_S at most forward C.G. with flaps retracted. Upper limit is maximum structural cruising speed.
Yellow Arc	127 - 158	Operating must be conducted with aution and only in smooth air.
Red Line	158	Maximum speed for all operations.

POWER PLANT LIMITATIONS

-Engine Manufacturer: Avco Lycoming. -Engine Model Number: O-320-D2J. -Maximum Power: 160 BHP rating. -Engine Operating Limits or Takeoff and continous **Operations:** Maximum Engine Speed: 2700 RPM. Maximum Oil Temperature: 245°F (118°C). -Oil Pressure Minimum: 25 psi. Maximum: 115 psi.

-Fuel Grade: See Fuel Limitations.
-Oil Grade (Specification): MIL-L-6082 Aviation Grade Streight Mineral Oil or MIL-L-22851 Ashless Dispersant Oil.
-Propeller Manufacturer: McCauley Accessory Division. Propeller Model Number: 1C160/DTM7557.
-Propeller Diameter, Maximum: 75 inches.

Minimum: 74 inches.

NOTE: The static RPM range at full throttle (carburetor heat off

and mixrure leaned to maximize RPM) is 2300 tp 2420 RPM.

POWER PLANT INSTRUMENT MARKINGS

Power plant instrument markings and their color code significance are shown in figure 2-3

RED LINE	GREEN ARC	RED LINE
MINIMUM LIMIT	NORMAL OPERATING	MAXIMUM LIMIT
	2100-2450 RPM	
	2100-2575 RPM	2700 RPM
	2100-2700 RPM	
	100°-245°F	245°F
25 psi	60-90 psi	115 psi
E		
(1.5 gal. Unusable		
Each Tank)		
E		
(2.0 gal. Unusable		
Each Tank		
R		
(3.0 gal. Unusable		
Each Tank)		
	4.5 - 5.5 in. Hg	
	RED LINE MINIMUM LIMIT 25 psi (1.5 gal. Unusable Each Tank) (2.0 gal. Unusable Each Tank	RED LINEGREEN ARCMINIMUM LIMITNORMAL OPERATING2100-2450 RPM 2100-2575 RPM 2100-2575 RPM 2100-2700 RPM100°-245°F25 psi60-90 psi25 psi60-90 psiE (1.5 gal. Unusable Each Tank)F (2.0 gal. Unusable Each Tank)R (3.0 gal. Unusable Each Tank)4.5 - 5.5 in. Hg

Figure 2-3 Power Plant Instrument Markings

WEIGHT LIMITS

NORMAL CATEGORY

-Maximum Ramp Weight: 2407 lbs. -Maximum Takeoff Weight:

2400 lbs.

-Maximum Landing Weight: 2400 lbs.

-Maximum Weight in Baggage Compartment:

Baggage Area 1 (or passenger on child's seat) - Station 82 tp 108: 120lbs. See following note. Baggage Area 2 - Station 108 to 142: 50 lbs. See following

to 142: 50 lbs. See following note.

UTILITY CATEGORY

- -Maximum Ramp Weight: 2107 lbs. -Maximum Takeoff Weight: 2100 lbs.
- -Maximum Landing Weight: 2100 lbs.

-Maximum Weight in Baggage Compartment: In the utility category, the

baggage compartement and rear seat must not be occupied. NOTE: The maximum combined weight capacity for baggage areas 1 and 2 is 120 lbs.

CENTER OF GRAVITY LIMITS

NORMAL CATEGORY

UTILITY CATEGORY

-Center of Gravity Range: Forward: 35.0 inches aft of datum at 1950 lbs or less, with straight line variation to 39.5 inches aft of datum at 2400 lbs. Aft: 47.3 inches aft of datum at all weights. Reference datum: Lower portion of front face of firewall. -Center of Gravity Range: Forward: 35.0 inches aft of datum at 1950 lbs or less, with straight line variation to 36.5 inches aft of datum at 2100 lbs. Aft: 40.5 inches aft of datum at all weights. Reference datum: Lower portion of front face of firewall.

MANEUVER LIMITS

NORMAL CATEGORY

This airplane is certificated in both the normal and utility category. The normal category is applicable to aircraft intended for non-aerobatic operations. These include any maneuvers incidental to normal flying, stalls (except whip stalls), lazy eights, chandelles, and turns in which the angle of bank is not more than 60° . Aerobatic maneuvers, including spins, are not approved.

UTILITY CATEGORY

This airplane is not designed for purely aerobatic flight. However, in the aquisition of various certificates such a commercial pilot and flight instructor, certain maneuvers are required by the FAA. All of these maneuvers are permitted in this airplane when operated in the utility category. In the utility category, the baggage compartment and rear seat must not be occupied. No aerobatic maneuvers are approved except those listed below:

MANEUVER

RECOMMENDED ENTRY SPEED*

Chandelles	105 knots
Lazy Eights	105 knots
Steep Turns	95 knots
Spins	Slow Deceleration
Stalls (except Whip Stalls)	Slow Deceleration

*Abrupt use of the controls is prohibited above 99 knots

Aerobatics that may impose high loads should not be attempted. The important thing to bear in mind in flight maneuveres is that the airplane is clean in aerodynamic design and will buils up speed quickly with the nose down. Proper speed control is an essential requirement for execution of any maneuver, and care should always be exercised to avoid excessive speed which in turn can impose excessive loads. In the execution of all maneuvers, avoid abrupt use of the controls. Intentional spins with flaps extended are prohibited.

FLIGHT LOAD FACTOR LIMITS

NORMAL CATEGORY

Flight Load Factors (maximum Takeoff Weight - 2400 lbs): *Flaps Up *Flaps Down

+3.8g, -1.52g +3.0g

*The design load factors are 150% of the above, and in all cases, the structure meets or exceeds design loads.

UTILITY CATEGORY

Flight Load Factors (maximum Takeoff Weight - 2100 lbs): *Flaps Up *Flaps Down +4.4g, -1.76g +3.0g

> *The design load factors are 150% of the above, and in all cases, the structure meets or exceeds design loads.

KINDS OF OPERATIONAL LIMITS

The airplane is equipped for day VFR and may be equipped for night VFR and/or IFR operations. FAR Part 91 establishes the minimum required instrumentation and equipment for these operations. The reference to types of flight operations on the operating limitations placard reflects equipment installed at the time of Airworthiness Certificate issuance. Flights into known icing conditions is prohibited.

FUEL LIMITATIONS

Fuel Capacity:

Standard Tanks: Total Capacity: 43 gallons Total Capacity Each Tank: 21.5 gallons Tatal Usable: 40 gallons Long Range Tanks: Total Capacity: 54 gallons Total Capacity Each Tank: 27 gallons Tatal Usable: 50 gallons Integral Tanks: Total Capacity: 68 gallons Total Capacity Each Tank: 34 gallons Tatal Usable: 62 gallons

NOTE:

To ensure maximum fuel capacity when refueling and minimize cross-feeding when parked on a sloping surface, place the fuel selector valve either LEFT or RIGHT position.

Takeoff and land with the fuel
selector valve handle in the BOTH
position

Maximum slip or skid duration with one tank dry: 30 seconds.

With 1/4 tank or less, prolonged

right tank in level flight. Fuel remaining in the tank after the fuel quantity indicator reads

empty (red line) cannot be safely

used in flight.

imcoordinated flight is prohibited when operating on either left or

LIGHT SIMULATION USE ONLY

SECTION 3

•Introduction	1
•Airspeeds for Emergency Procedures	1
•Engine Failures	-
-Engine Failure during Takeoff Run	1
-Engine Failure immediately after T/O	1
-Engine Failure during Flight	2
Engine randing Concod Landings	2
	-
-Emergency Landing without Engine Power	2
-Precautionary Landing with Engine Power	2
-Ditching	3
•Fires	
-During Start on Ground	3
–Engine Fire in Flight	4
-Electrical Fire in Flight	4
–Cabin Fire	4
-Wing Fire	4
 Landing with a Flat Main Tire 	5
•Electrical Power Supply System Malfunctions	
-Ecxessive rate of Discharge	5
-Low-Voltage Light illuminates	5
•lcing	
-Inadverted Icing Encounter	6
-Static Source Blockage	6

INTRODUCTION

This Section provides checklists and amplified procedures for coping with emergencies that might occur. Emergencies caused by airplane or engine malfunctions are extremely rare if proper preflight inspections and maintainance are practiced. Enroute weather emergencies can be minimized or eliminated by careful flight planning and good judgement when unexpected weather is encountered. However, should an emergency arise, the basic guidelines described in this section should be considered and applied as necessary to correct the problem.

AIRSPEEDS FOR EMERGENCY OPERATION

Engine Failure After Takeoff:	
Wing Flaps Up	65 KIAS
Wing Flaps Down	60 KIAS
Maneuvering Speed:	
2400 Lbs	99 KIAS
2000 Lbs	92 KIAS
1600 Lbs	82 KIAS
Maximum Glide	65 KIAS
Precautionary Landing With Engine Power	60 KIAS
Landing Without Engine Power:	
Wing Flaps Up	65 KIAS
Wing Flaps Down	60 KIAS

ENGINE FAILURES

ENGINE FAILURE DURING TAKEOFF RUN				
[1]	Throttle		IDLE	
[2]	Brakes		APPLY	
[3]	Wing Flaps		RETRACT	
[4]	Mixture		IDLE CUT-OFF	
[5]	Ignition Switch		OFF	
[6]	Master Switch		OFF	

ENGINE FAILURE IMMEDIATELY AFTER TAKEOFF			
[1]	Airspeed	65 KIAS (flaps up) 60 KIAS (flaps down)	
[2]	Mixture	IDLE CUT-OFF	
[3]	Fuel Selector Valve	OFF	
[4]	Ignition Switch	OF	
[5]	Wing Flaps	AS REQUIRED	
[6]	Master Switch	OFF	

ENGINE FAILURE DURING FLIGHT			
[1]	Airspeed	65 KIAS	
[2]	Carburetor Heat	ON	
[3]	Fuel Selevtor Valve	BOTH	
[4]	Mixture	RICH	
[5]	Ignition Switch	BOTH	
[6]	Primer	IN and LOCKED	

FORCED LANDINGS

EMERGENCY LANDING WITHOUT ENGINE POWER			
[1]	Airspeed		65 KIAS (flaps up) 60 KIAS (flaps down)
[2]	Mixture		IDLE CUT-OFF
[3]	Fuel Selector Valve		OFF
[4]	Igition Switch		OFF
[5]	Wing Flaps		AS REQUIRED (30° recommended)
[6]	Master Switch		OFF
[7]	Doors		UNLATCH PRIOR TO TOUCHDOWN
[8]	Touchdown		SLIGHTLY TAIL LOW
[9]	Brakes		APPLY HEAVILY
X			

PRECAUTIONARY LANDING WITH ENGINE POWER			
[1]	Wing Flaps	20°	
[2]	Airspeed	60 KIAS	
[3]	Selected Field	FLY OVER, noting terrain and obstruction then retract flaps upon reaching a safe altitude and airspeed	
[4]	Avionics Power Switch		
	and Electrical Switches	OFF	
[5]	Wing Flaps	30° (on final approach)	
[6]	Airspeed	60 KIAS	
[7]	Master Switch	OFF	
[8]	Doors	UNLATCH PRIOR TO TOUCHDOWN	
[9]	Touchdown	SLIGHTLY TAIL LOW	
[10]	Ignition Switch	OFF	
[11]	Brakes	APPLY HEAVILY	

DITCHING			
[1]	Radio		TRANSMIT MAYDAY on 121.5 MHz, giving location and intentions and SQUAWK 7700
[2]	Heavy Objects)		SECURE OR JETTISON
[3]	Approach High Winds, Heavy Seas Lgt. Winds, Heavy Swells		INTO THE WIND PARALLEL TO SWELLS
[4]	Wing Flaps		20° - 30°
[5]	Power		ESTABLISH 300 FT/MIN DESCENT AT 55 KIAS
[6]	Cabin Doors		UNLATCH
[7]	Touchdown		LEVEL ATTITUDE AT EST. RATE OF DESCENT
[8]	Face		CUSHION at touchdown with folded coat
[9]	Airplane		EVACUATE through cabin doors.
[10]	Life Vests and Raft		INFLATE

REMEMBER: Mayday 121.5 MHz Squawk 7700

f necessary, open window and lood the cabin to equalize pressure so doors can be opened.

FIRES

DUR	ING START ON GF	ROUND
[1]	Cranking	CONTINUE to get a start
A. If e	ngine starts	
[2]	Power	1700 RPM for a few minutes
[3]	Engine	SHUTDOWN and inspect
	0	for damage
B. If e	ngine fails to start	
[4]	Throttle	FULL OPEN
[5]	Mixture	IDLE CUT-OFF
[6]	Cranking	CONTINUE
[7]	Fire Extinguish	er OBTAIN (have ground
		attendants obtain if not
		installed)
[8]	Engine	SECURE
		a. Master Switch OFF
		b. Ignition Switch OFF
		c. Fuel Selector Valve OFF
[9]	Fire	EXTINGUISH using fire
		extinguisher, wool blanket
		or dirt
[10]	Fire Damage	INSPECT

...which would suck the flames and accumulated fuel through the carburetor and into the engine

repair damage or replace damaged components or wiring before conducting another flight

ENGINE FIRE IN FLIGHT

[1]	Mixture	IDLE CUT-OFF
[2]	Fuel Selector Valve	OFF
[3]	Master Switch	OFF
[4]	Cabin Heat and Air	OFF (except overhead vents)
[5]	Airspeed	100 KIAS
[6]	Forced Landing	EXECUTE

If fire is not extinguished, increase glide speed to find an airspeed which will provide an incombustible mixture

ELECTRICAL FIRE IN FLIGHT			
[1]	Master Switch		OFF
[2]	Avionics Power Switch		OFF
[3]	All other switches		
	(except ignition switch)		OFF
[4]	Vents/Cabin Air/Heat		CLOSED
[5]	Fire Extinguisher		ACTIVATE (if available)
If fire an continu	opears out and electrical p ance of flight:	OWO	er is necessary for
[6]	Master Switch		ON
[7]	Circuit Breakers		CHECK for faulty circuit
			Do not reset
[8]	Radio Switches		OFF
[9]	Avionics Power Switch		ON
[10]	Radio/Electrical Switches		ON one at a time, with delay after each until short circuit is localized
[11]	Vents/Cabin Air/Heat		OPEN when it is ascertained that fire completely extinguished

WARNING: After discharging an extinguisher within closed cabin, ventilate the cabin!

CABIN FIRE

[1]	Master Switch	OFF
[2]	Vents/Cabin Air/Heat	CLOSED (to avoid drafts)
[3]	Fire Extinguisher	ACTIVATE (if available)
[4]	Land the airplane as soo	on as possible to
	inspect for damage	

WING FIRE

[1]	Navigation Light Switch OFF
[2]	Pitot Heat Switch (if installed) OFF
[3]	Strobe Light Switch (if installed) OFF

WARNING: After discharging an extinguisher within closed cabin, ventilate the cabin!

NOTE:

Perform a sideslip to keep the flames away from the fuel tank and cabin, and land as soon as possible using wing flaps only as required for final approach.

LANDING WITH A FLAT MAIN TIRE _____

LANDING WITH A FLAT MAIN TIRE

- [1] Approach[2] Touchdown
- --- NORMAL --- GOOD TIRE FIRST

NOTE:

Try to hold airplane off flat tire as long as possible.

ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS

AMMETER SHOWS EXCESSIVE RATE OF DISCHARGE			
[1]	Alternator	OFF	
[2]	Alternator Circuit		
	Breaker	PULL	
[3]	Nonessential Electrical		
	Equipment	OFF	
[4]	Flight	TERMINATE as soon as practical	

LOW-VOLTAGE LIGHT ILLUMINATES DURING FLIGHT (Ammeter Indicates Discharge)

[1]	Avionics Power Switch		OFF
[2]	Alternator Circuit		
	Breaker		CHECK IN
[3]	Master Switch		OFF
[4]	Master Switch		ON
[5]	Low-Voltage Light		CHECK OFF
[6]	Avionics Power Switch		ON
If low-v	oltage Light illuminates ag	gain	:
[7]	Alternator		OFF
[8]	Nonessential Radio and		
	Electrical Equipment		OFF
[9]	Flight		TERMINATE as soon
			as practical

NOTE:

Illumination of the lowvoltage light may occur during low RPM conditions with an electrical load on the system such as during low RPM taxi. Under these conditions, the light will go out at higher RPM. The master switch need not be recycled since an overvoltage condition has not occured to de-activate the alternator system.

ICING

INADV	ERTED ICING ENCOUNTER
[1]	Turn pitot heat switch ON (if installed)
[2]	Turn back or change altitude to obtain an outside air tempera- ture that is less conductive to icing.
[3]	Pull cabin heat control full out and open defroster outlets to obtain maximum windshield defroster airflow. Adjust cabin air control to get maximum defroster heat and airflow.
[4]	Open the throttle to increase engine speed and minimize ice build up on propeller blades.
[5]	Watch for signs of carburetor air filter ice and apply carburetor heat as required. An unexplained loss in engine speed could be caused by carburetor ice or air intake filter ice. Lean the mix- ture for maximum RPM, if carburetor heat is used continously.
[6]	Plan a landing at the nearest airport. With an extremely rapid ice build-up, select a suitable "off airport" landing site.
[7]	With an ice accumulation of 1/4 inch or more on the wing leading edges, be prepared for significantly higher stall speed.
[8]	Leave wing flaps retracted. With a severe ice build-up on the horizontal tail, the change in wing wake airflow direction caused by wing flap extension could result in a loss of elevator effectiveness.
[9]	Open left window and, if practical, scrape ice from a portion of the windshield for visibility in the landing approach.
[10]	Perform a landing approach using a forward slip, if necessary, for improved visibility.
[11]	Approach at 65 to 75 KIAS depending upon the amount of the accumulation.
[12]	Perform a landing in level attitude.

STATIC SOURCE BLOCKAGE (Erroneous Instrument Reading Suspected)

[1]	Alternate Static Source	
	Valve	PULL ON
[2]	Airspeed	Consult appropriate
		calibration tables in Section 5

SECTION 4

Introduction	1
 Speeds for Normal Operation 	1
•Before Starting Engine	1
•Starting Engine	2
•Before Takeoff	2
•Takeoff	
-Normal Takeoff	3
-Short Field Takeoff	3
•Enroute Climb	3
•Cruise	3
•Descents	4
•Before Landing	4
•Landing	
-Normal Landing	4
-Short Field Landing	5
-Balked Landing	5
•After Landing	5
•Securing Airplane	5

INTRODUCTION

Section 4 provides checklists and amplified procedures for

the conduct of normal operation.

SPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the l following speeds are based on a a maximum weight of 2400 s	esser weight. However, to achieve the performance pecified in Section 5 for	appropriate to the particular weight must be used.
pounds and may be used for t	akeoff distance, the speed	
Takeoff, Flaps Up:		
Normal Climb Out	70 - 80 KIAS	
Short Field Takeoff, Flaps 10	°,	
Speed at 50 Feet	56 KIAS	
Enroute Climb, Flaps Up:		
Normal, Sea Level	75 - 85 KIAS	
Normal, 10000 Feet	70 - 80 KIAS	
Best Rate of Climb, Sea Level	76 KIAS	
Best Rate of Climb, 10000 Fe	et 71 KIAS	
Best Angle Of Climb, Sea Leve	el 60 KIAS	
Best Angle Of Climb, 10000 I	Feet 65 KIAS	
Landing Approach:		
Normal Approach, Flaps Up	65 - 75 KIAS	
Normal Approach, Flaps 30°	60 - 70 KIAS	
Short Fiel Approach, Flaps 30	0° 61 KIAS	
Balked Landing:		
Maximum Power, Flaps 20°	55 KIAS	
Maximum Recommended Turbulent		
Air Penetration Speed:		
2400 lbs	99 KIAS	
2000 lbs	92 KIAS	
1600 lbs	82 KIAS	
Maximum Demonstrated Crosswind V	elocity:	
Takeoff or Landing	15 KNOTS	

BEFORE STARTING ENGINE

BEFOR	E STARTING ENGINE	
[1]	Preflight Inspection	 COMPLETE
[2]	Seats, Seat Belts,	
	Shoulder Harnesses	 ADJUST and LOCK.
[3]	Fuel Selector Valve	 BOTH
[4]	Avionics Power Switch, Autopilot,	
	Electrical Equipment	 OFF
[5]	Brake	 TEST and SET
[6]	Circuit Breakers	 CHECK IN

CAUTION: The Avionics Power Switch must be OFF during engine start to prevent possible damage to avionics.

STARTING ENGINE

START	ING ENGINE		
[1]	Mixture	 RICH	
[2]	Carburetor Heat	 COLD	
[3]	Master Switch	 ON	
[4]	Prime	 AS REQUIRED	
[5]	Throttle	 OPEN 1/8 INCH	
[6]	Propeller Area	 CLEAR	
[7]	Ignition Switch	 START	
[8]	Oil Pressure	 CHECK	
[9]	Flashing Beacon and		
	Navigation Lights	 ON as required	
[10]	Avionics Power Switch	 ON	
[11]	Radios	 ON	
			-7

Prime 2 to 6 strokes; none if engine is warm

BEFORE TAKEOFF

BEFOR	E TAKEOFF
[1]	Parking Brake SET
[2]	Cabin Doors and
	Windows CLOSED and LOCKED
[3]	Flight Controls FREE and CORRECT
[4]	Flight Instruments SET
[5]	Fuel Selector Valve BOTH
[6]	Mixture RICH (below 3000 feet)
[7]	Elevator Trim and
	Rudder Trim TAKEOFF
[8]	Throttle 1700 RPM
	a. Magnetos CHECK
	b. Carburetor Heat CHECK (for RPM drop)
	c. Engine Instru-
	ments and
	Ammeter CHECK
	d. Suction Gauge CHECK
[9]	Throttle 1000 RPM or LESS
[10]	Radios SET
[11]	Autopilot (if installed) OFF
[12]	Air Conditioner (if
	installed) OFF
[13]	Strobe Lights AS DESIRED
[14]	Brakes RELEASE

RPM drop should not exceed 125 RPM on either magneto or 50 RPM difference between magnetos

NORM	IAL TAKEOFF	
[1]	Wing Flaps	0° - 10°
[2]	Carburetor Heat	COLD
[3]	Throttle	FULL OPEN
[4]	Elevator Control	LIFT NOSE WHEEL
		(at 55 KIAS)
[5]	Climb Speed	70 - 80 KIAS

SHOR	T FIELD TAKEOFF		
[1]	Wing Flaps	10°	
[2]	Carburetor Heat	COLD	
[3]	Brakes	APPLY	
[4]	Throttle	FULL OPEN	
[5]	Mixture	RICH (above 3000 feet LEAN for max RPM)	
[6]	Brakes	RELEASE	
[7]	Elevator Control	SLIGHTLY TAIL DOWN	
[8]	Climb Speed	56 KIAS (until obstacles are cleared))

ENROUTE CLIMB

ENRO	JTE CLIMB	
[1]	Airspeed	 70 - 80 KIAS
[2]	Throttle	 FULL OPEN
[3]	Mixture	 RICH (above 3000 feet LEAN to obtain max RPM)

If a maximum performance climb is necessary, use speeds shown in the Rate of Climb chart in Section 5.

CRUISE

CRUIS	E	
[1]	Power	 2100 - 2700 RPM
[2]	Elevator and Rudder	
	Trim (if installed)	 ADJUST
[3]	Mixture	 LEAN

(no more than 75% recommended)

DESCENT

DESCE	ENT	
[1]	Fuel Selector Valve	BOTH
[2]	Mixture	ADJUST for smooth operation
[3]	Power	AS DESIRED
[4]	Carburetor Heat	FULL HEAT AS REQUIRED

BEFORE LANDING

BEFORE LANDING			
[1]	Seats, Seat Belts,		
	Shoulder Harnesses		SECURE
[2]	Fuel Selector Valve		BOTH
[3]	Mixture		RICH
[4]	Carburetor Heat		ON
[5]	Autopilot		OF
[6]	Air Conditioner		
	(if installed)		OFF

LANDING

NORM	IAL LANDING	
[1]	Airspeed	 65 - 75 KIAS (flaps up)
[2]	Wing Flaps	 AS DESIRED (0° - 10° below 110 KIAS, 10° - 30° below 85 KIAS)
[3]	Airspeed	 60 - 70 KIAS (flaps DOWN)
[4]	Touchdown	 MAIN WHEELS FIRST
[5]	Landing Roll	 LOWER NOSE WHEEL GENTLY
[6]	Braking	 MINIMUM REQUIRED

SHORT FIELD LANDING				
[1]	Airspeed		65 - 75 KIAS (flaps UP)	
[2]	Wing Flaps		FULL DOWN	
[3]	Airspeed		61 KIAS (until flare)	
[4]	Power		REDUCE to idle after clearing obstacles	
[5]	Touchdown		MAIN WHEELS FIRST	
[6]	Brakes		APPLY HEAVILY	
[7]	Wing Flaps		RETRACT	

BALK	ED LANDING		
[1]	Throttle	FULL OPEN	
[2]	Carburetor Heat	COLD	
[3]	Wing Flaps	20° (immediately)	
[4]	Climb Speed	55 KIAS	
[5]	Wing Flaps	10° (until obstacles are cleared) RETRACT (after reaching a safe altitude and 60 KIAS)	

AFTER LANDING

AFTER	LANDING		
[1]	Wing Flaps	UP	
[2]	Carburetor Heat	COLD	

SECURING AIRPLANE

SECU	RING AIRPLANE	
[1]	Parking Brake	 SET
[2]	Avionics Power Switch,	
	Electrical Equipment,	
	Autopilot	 OFF
[3]	Mixture	 IDLE CUT-OFF
[4]	Ignition Switch	 OFF
[5]	Master Switch	 OFF
[6]	Control Locks	 INSTALL

SECTION 5

•Example	1
•Takeoff	1
•Cruise	2
•Fuel Required	2
•Landing	3
 Airspeed Calibration 	4
•Stall Speeds	5
•Takeoff Distance	6
•Maximum Rate of Climb	7
 Time, Fuel & Distance to Climb 	7
•Cruise Performance	8
•Range Profiles	9, 10
•Endurance Profiles	10, 11
Landing Distance	12

EXAMPLE

Throughout this Section we will consider the following specifications an example to demonstrate usage of the performance charts.

TA	KEOFF CONDITIONS Field length Field pressure altitude Temperature	3200 feet 2000 feet 30°C
CR	RUISE CONDITIONS Total distance Pressure Altitude Temperature Expected wind enroute	320 nm 5500 feet 20°C 10 knot headwind
LA	NDING CONDITIONS Field length Field pressure altitude Temperature	3000 feet 2000 feet 25°C

TAKEOFF

The takeoff distance chart, figure 5-4 should be consultet, keeping in mind that that the distances shown are based on the short field technique. Conservative

distances can be established by reading the chart at the next higher value of weight, altitude and temperature. For example, a weight of 2400 pounds, pressure altitude of 2000 feet and a temperature of 30°C should result in the following:

Ground roll 1200 Feet Total distance to clear a 50-foot obstacle 2220 Feet

A correction for the effect of wind may be based on Note 3 of the a 12 knot headwind is:

$$\frac{12 \text{ Knots}}{9 \text{ Knots}}$$
 × 10% = 13% Decrease

This results in the following distances, corrected for wind:

1200
156
1044
2220
289
1931

CRUISE

The cruising altitude should be selected based on a consideration of trip length, winds aloft, and the airplane's performance. A typical cruising altitude and the expected wind enroute have been given for the sample problem. However, the power setting selection for cruise must be determined based on several considerations. These include the cruise performance characteristics presented in figure 5-7, the range profile chart presented in figure 5-8, and the endurance profile chart presented in figure 5-9.

The relationship between power and range is illustrated by the range profile chart. Considerable fuel savings and longer range result when lower power settings are used. For thze sample problem, a cruise power of approximately 65% will be used. The cruise performance chart, figure 5-7, is centered at 6000 feet altitude and 20°C above standard temperature. These values most nearly correspond to the planned altitude and expected temperature conditions. The engine speed chosen is 2500 RPM, which results in the following: •

Power True airspeed Cruise fuel flow 66% 112 knots 7.4 GPH

FUEL REQUIRED

The total fuel requirement for the flight may be estimated using the performance information in figzres 5-6 and 5-7. For the sample problem, figure 5-6 shows that a climb from 2000 feet to 6000 feet requires 1.6 gallons of fuel. The corresponding distance during the climb is 10 nautical miles. These values are for a standard temperature and are sufficiently accurate for most flight planning purposes. However, a further correction for the effect of temperature may be made as noted on the climb chart. The approximate effect of a non-standard temperature is to

increase the time, fuel, and distance by 10% for each 10° C above standard temperature, due to the lower rate of climb. In this case, assuming a temperature 16° C above standard, the correction would be:

 $\frac{16^{\circ}\text{C}}{10^{\circ}\text{C}} \times 10\% = 16\%$ Increase

With this factor included, the fuel estimate would be calculated as follows:

Fuel to climb, standard temperature	1.6
Increase due to non-standard temperature	
$(1.6 \times 16\%)$	0.3
Corrected fuel to climb	1.9 gal.

Using a similar procedure for the distance to climb results in 12 nautical miles. The resultant cruise distance is:	Total distance320Climb distance-12Cruise distance308
With an expected 10 knot headwind, the ground speed for cruise is predicted to be:	112 <u>-10</u> 102 knots
Therefor, the time required for the cruise portion of the trip is:	$\frac{308 \text{ nm}}{102 \text{ knots}} = 3.0 \text{ hours}$
The fuel required for cruise is:	3.0 hours × 7.4 gallons/hour = 22.2 gallons
A 45-minute reserve requires:	$\frac{45}{60}$ × 7.4 gallons/hour = 5.6 gallons

The total estimated fuel required is as follows:

1.1	
1.9	
22.2	
5.6	
30.8	gallons
	$ \begin{array}{r} 1.1 \\ 1.9 \\ 22.2 \\ \underline{5.6} \\ \overline{30.8} \end{array} $

Once the flight is underway,	for estimating the time enroute	with ample reserve.
ground speed checks will	and the corresponding fuel	
provide a more accurate basis	required to complete the trip	

LANDING

A procedure similar to takeoff should be used for estimating the landing distance at the	destination airport. Figure 5-10 presents landing distance information for the short field) t e c l 3	echnique. corresponding 30°C are as fol	The g to 200 llows:	distance 00 feet and	
Ground roll Total distance to clear a	a 50-foot obstacle	610 1390	feet feet			

A correction for the effect of wind may be made based on

Note 2 of the landing chart of using the same procedure as

outlined for takeoff.

•

AIRSPEED CALIBRATION

CONDITION:

Power required for level flight or maximum rated RPM dive.

FLAPS UP													
KIAS KCAS	50 56	60 62	70 70	80 79	90 89	$\begin{array}{c} 100\\ 98 \end{array}$	$\begin{array}{c} 110 \\ 107 \end{array}$	120 117	130 126	140 135	150 145	$\begin{array}{c} 160 \\ 154 \end{array}$	
FLAPS 10°													
KIAS KCAS	40 49	50 55	60 62	70 70	80 79	90 89	$\begin{array}{c} 100\\98 \end{array}$	$\begin{array}{c} 110 \\ 108 \end{array}$					
FLAPS 30°													
KIAS KCAS	40 47	50 53	60 61	70 70	80 80	85 84							

HEATER/VENTS AND WINDOWS CLOSED

FLAPS UP	(
NORMAL KIAS ALTERNATE KIAS	50 51	60 61	70 71	80 82	90 91	$\begin{array}{c} 100 \\ 101 \end{array}$	$\begin{array}{c} 110 \\ 111 \end{array}$	120 121	$\begin{array}{c} 130\\ 131 \end{array}$	140 141	
FLAPS 10°											
NORMAL KIAS ALTERNATE KIAS	40 40	50 51	60 61	70 71	80 81	90 90	$\substack{100\\99}$	$\begin{array}{c} 110 \\ 108 \end{array}$			
FLAPS 30°											
NORMAL KIAS ALTERNATE KIAS	40 48	50 50	60 60	70 70	80 79	85 83					

HEATER/VENTS OPEN AND WINDOWS CLOSED

FLAPS UP											
NORMAL KIAS ALTERNATE KIAS	40 36	50 48	60 59	70 70	80 80	90 89	$\substack{100\\99}$	$\begin{array}{c} 110 \\ 108 \end{array}$	$\begin{array}{c} 120\\118 \end{array}$	$\begin{array}{c} 130\\128 \end{array}$	140 139
FLAPS 10°											
NORMAL KIAS ALTERNATE KIAS	40 38	50 49	60 59	70 69	80 79	90 88	$\begin{array}{c} 100\\ 97 \end{array}$	$\begin{array}{c} 110 \\ 106 \end{array}$			
FLAPS 30°											
NORMAL KIAS ALTERNATE KIAS	40 34	50 47	60 57	70 67	80 77	85 81)

WINDOWS OPEN

FLAPS UP											
NORMAL KIAS ALTERNATE KIAS	40 26	50 43	60 57	70 70	80 82	90 93	$\begin{array}{c} 100 \\ 103 \end{array}$	$\begin{array}{c} 110\\ 113 \end{array}$	120 123	$\begin{array}{c} 130\\ 133 \end{array}$	140 143
FLAPS 10°											
NORMAL KIAS ALTERNATE KIAS	40 25	50 43	60 57	70 69	80 80	90 91	$\begin{smallmatrix} 100 \\ 101 \end{smallmatrix}$	$\begin{array}{c} 110 \\ 111 \end{array}$			
FLAPS 30°											
NORMAL KIAS ALTERNATE KIAS	40 25	50 41	60 54	70 67	80 78	85 84					

Figure 5-1 Airspeed Calibration (Sheet 2 of 2)

STALL SPEEDS

CONDITIONS: Power Off

NOTES: 1. Altitude loss during a stall recovery may be as much as 230 feet. 2. KIAS values are appoximate.

MOST REARWARD CENTER OF GRAVITY

		ANGLE OF BANK										
WEIGHT LBS	FLAP DEFLECTION		0°	3	0°	45	5°	60°				
		KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS			
	UP	44	51	47	55	52	61	62	72			
2400	10°	35	48	38	52	42	57	49	68			
	30°	33	46	35	49	39	55	47	65			

MOST FORWARD CENTER OF GRAVITY

		ANGLE OF BANK										
WEIGHT LBS	FLAP DEFLECTION	0°		30°		45	5°	60°				
		KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS			
	UP	44	52	47	56	52	62	62	74			
2400	10°	37	49	40	53	44	58	52	69			
	30°	33	46	35	49	39	55	47	65			

Figure 5-3 Stall Speeds

TAKEOFF DISTANCE

CONDITIONS:

FLAPS 10° Full Throttle Prior to Brak Release Pavel, Level, Dry Runwa Zero Wind Maximum Weight 2400 lb

NOTES:

1. Short field technique as specified in Section 4. 2. Prior to takeoff from fields above 3000 feet elevation, the

	maximum RPM in a full throttle,	
ĸe	static runup.	
	3. Decrease distances 10% for	
ıу	each 9 knots headwind. For	
	operation with tailwinds up to 10	
DS .	knots, increase distances by 10%	
	for each 2 knots.	
	4. For operation on a dry, grass	
	runway, increase distances by	
	15% of the "ground roll" figure.	

mixture should be leaned to give

	TAKI SPF	EOFF			0°C	1	0°C	20)°C	30)°C	4	0°C
WEIGHT LBS	KL LIFT OFF	AS AT 50 FT	PRESS ALT FT	GRND ROLL	TOTAL TO CLR 50 FT OBS								
2400	51	56	S.L	795	1460	860	1570	925	1685	995	1810	1065	1945
			1000	875	1605	940	1725	1015	1860	1090	2000	1170	2155
			2000	960	1770	1035	1910	1115	2030	1200	2220	1290	2395
			3000	1055	1960	1140	2120	1230	2295	1325	2480	1425	2685
			4000	1165	2185	1260	2365	1355	2570	1465	2790	1575	3030
			5000	1285	2445	1390	2660	1500	2895	1620	3160	1745	3455
			6000	1425	1755	1540	3015	1665	3300	1800	3620	1940	3990
			7000	1580	3140	1710	3450	1850	3805	2000	4220		
			8000	1755	3615	1905	4015	2060	4480				
2200	49	54	S.L	650	1195	700	1280	750	1375	805	1470	865	1575
			1000	710	1310	765	1405	825	1510	885	1615	950	1735
			2000	780	1440	840	1545	905	1660	975	1785	1045	1915
			3000	855	1585	925	1705	995	1835	1070	1975	1150	2130
			4000	945	1750	1020	1890	1100	2040	1180	2200	1270	2375
			5000	1040	1945	1125	2105	1210	2275	1305	2465	1405	2665
			6000	1150	2170	1240	2355	1340	2555	1445	2775	1555	3020
			7000	1270	2440	1375	1655	1485	2890	1605	3155	1730	3450
			8000	1410	2760	1525	3016	1650	3305	1785	3630	1925	4005
2000	46	51	S.L	525	970	565	1035	605	1110	650	1185	695	1265
			1000	570	1080	615	1135	665	1215	710	1295	765	1385
			2000	625	1160	675	1240	725	1330	780	1425	840	1525
			3000	690	1270	740	1365	800	1465	860	1570	920	1685
			4000	755	1400	815	1500	880	1615	945	1735	1015	1865
			5000	830	1545	900	1660	970	1790	1040	1925	1120	2070
			6000	920	1710	990	1845	1070	1990	1150	2145	1235	2315
			7000	1015	1900	1095	2055	1180	2225	1275	2405	1370	2605
			8000	1125	2125	1215	2305	1310	2500	1410	2715	1520	2950

Figure 5-4. Takeoff Distance

MAXIMUM RATE OF CLIMB

WFIGHT	PRESS	CLIMB SPFFD	RATE OF CLIMB - FPM							
LBS	FT	KIAS	-20°	0°	20°	40°				
2400	S.L.	76	805	745	685	625				
	2000	75	695	640	580	525				
	4000	74	590	535	480	420				
	6000	73	485	430	375	320				
	8000	72	380	330	275	220				
	10000	71	275	225	175					
	12000	70	175	125						

CONDITIONS: Flaps Up Full Throttle

NOTE: Mixture leaned above 3000 feet for maximum RPM:

Figure 5-5. Maximum Rate of Climb

TIME, FUEL AND DIATNCE TO CLIMB

MAXIMUM RATE OF CLIMB

	PRESSURE	CLIMB RATE (RATE OF	FI	ROM SEA LEVEL			
WEIGHT LBS	ALTITUDE FT	°C	SPEED KIAS	CLIMB FPM	TIME MIN	FUEL USED GALLONS	DISTANCE NM		
2400	S.L.	15	76	700	0	0.0	0		
	1000	13	76	655	1	0.3	2		
	2000	11	75	610	3	0.6	4		
	3000	9	75	560	5	1.0	6		
	4000	7	74	515	7	1.4	9		
	5000	5	74	470	9	1.7	11		
	6000	3	73	425	11	2.2	14		
	7000	1	72	375	14	2.6	18		
	8000	-1	72	330	17	3.1	22		
	9000	-3	71	285	20	3.6	26		
	10000	-5	71	240	24	4.2	32		
	11000	-7	70	190	29	4.9	38		
	12000	-9	70	145	35	5.8	47		

CONDITIONS: Flaps Up Full Throttle Standard Temperature

NOTES:

1. Add 1.1 gallons of fuel for engine start, taxi and takeoff allowance.

2. Mixture leaned above 3000 feet for maximum RPM. 3. Increase time, fuel and distance by 10% for each $10^\circ\mathrm{C}$ above standard temp.

4. Distances shown are based on zero wind.

Figure 5-6. Time, Fuel, and Distance to Climb

CRUISE PERFORMANCE

PRESS	RPM	20°C BELOW STANDARD TEMP			ST TEN	'ANDAF IPERAT	RD URE	20°C ABOVE STANDARD TEMP		
FT	KPM	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2000	2500				76	114	8.5	72	114	8.1
	2400	72	110	8.1	69	109	7.7	65	108	7.3
	2300	65	104	7.3	62	103	6.9	59	102	6.6
	2200	58	99	6.6	55	97	6.3	53	96	6.1
	2100	52	92	6.0	50	91	5.8	48	89	5.7
4000	2550				76	117	8.5	72	116	8.1
	2500	72	115	8.6	73	114	8.1	69	113	7.7
	2400	69	109	7.8	65	108	7.3	62	107	7.0
	2300	62	104	7.0	59	102	6.6	57	101	6.4
	2200	56	98	6.3	54	96	6.1	51	94	5.9
	2100	51	91	5.8	48	89	5.7	47	88	5.5
6000	2600				77	119	8.6	72	118	8.1
	2500	73	114	8.2	69	113	7.8	66	112	7.4
	2400	66	108	7.4	63	107	7.0	60	106	6.7
	2300	60	103	6.7	57	101	6.4	55	99	6.2
	2200	54	96	6.1	52	95	5.9	50	92	5.8
	2100	49	90	5.7	47	88	5.5	46	86	5.5
8000	2650				77	121	8.6	73	120	8.1
	2600	77	119	8.7	73	118	8.2	69	117	7.8
	2500	70	113	7.8	66	112	7.4	63	111	7.1
	2400	63	106	7.1	60	106	6.7	58	104	6.5
	2300	57	101	6.4	55	100	6.2	53	97	6.0
	2200	52	95	6.0	50	93	5.8	49	91	5.7
10000	2600	74	118	8.3	70	117	7.8	66	115	7.4
	2500	67	112	7.5	64	111	7.1	61	109	6.8
	2400	61	106	6.8	58	105	6.5	56	102	6.3
	2300	55	100	6.3	53	98	6.0	51	96	5.9
	2200	50	93	5.8	49	91	5.7	47	89	5.6
12000	2550	67	114	7.5	64	112	7.1	61	111	6.9
	250	64	111	7.2	61	109	6.8	59	107	6.6
	2400	59	105	6.6	56	103	6.3	54	100	6.1
	2300	53	98	6.1	51	96	5.9	50	94	5.8

CONDITIONS: 2400 Pounds

Figure 5-7. Cruise Performance

PERFORMANCE PAGE 9

RANGE PROFILE

45 MINUTE RESERVE 40 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

Note: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb

RANGE PROFILE

45 MINUTE RESERVE 50 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

Note: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb

PERFORMANCE PAGE 10

RANGE PROFILE

45 MINUTE RESERVE 62 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

Note: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb

ENDURANCE PROFILE

45 MINUTE RESERVE 40 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature

Note: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb

ENDURANCE PROFILE

45 MINUTE RESERVE 50 GALLONS USABLE FUEL

CONDITIONS: 2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature

Note:

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb

ENDURANCE PROFILE

45 MINUTE RESERVE 62 GALLONS USABLE FUEL

CONDITIONS:

2400 Pounds Recommended Lean Mixture for Cruise Standard Temperature

Note: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb

LANDING DISTANCE

CONDITIONS: Flaps 30° Power Off Maximum Braking Paved, Level, Dry Runway Zero Wind

NOTES:

 Short field technique as specified in Section 4.
 Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
 For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure.

	SPEED		C)°C	1	0°C	2	20°C	3	0°C	2	10°C
WEIGHT LBS	AT 50 FT KIAS	PRESS ALT FT	GRND ROLL	TOTAL TO CLR 50 FT OBS								
2400	61	S.L	510	1235	530	1265	550	1295	570	1325	585	1350
		1000	530	1265	550	1295	570	1325	590	1360	610	1390
		2000	550	1295	570	1330	590	1360	610	1390	630	1425
		3000	570	1330	590	1360	615	1395	635	1430	655	1460
		4000	595	1365	615	1400	635	1430	660	1470	680	1500
		5000	615	1400	640	1435	660	1470	685	1510	705	1540
		6000	640	1435	660	1470	685	1510	710	1550	730	1580
		7000	665	1475	690	1515	710	1550	735	1590	760	1630
		8000	690	1515	715	1555	740	1595	765	1635	790	1675

Figure 5-10. Landing Distance

SECTION 6 TABLE OF CONTENTS

•Instrument Panel	1
•Engine Oil System	2
Inition-Starter System	2
•Air Induction System	2
•Carburetor and Priming System	2
•Cooling System	3
•Propeller	3
•Fuel System	3
•Brake System	4
•Electrical System	4
•Lighting	6
•Stall Warning System	6
 Avionivs Support Equipment 	6
•Static Dischargers	6
 Pitot Static System and Instruments 	7
•Vacuum System and Instruments	7

INSTRUMENT PANEL

- 1. Oil Temperature/Oil Pressure
- 2. Fuel Quantity Indicators
- 3. Suction gage
- 4. Clock/Timer
- 5. Air Spee Indicator
- 6. Attitude Indicator
- 7. Altimeter
- 8. Course Deviation Indicator
- 9. Magnetic Compass
- 10. COM/NAV Radios

- 11. Autopilot
- 12. Ammeter
- 13. Master Switch
- 14. Primer
- 15. Ignition Switch
- 16. Thermometer
- 17. Tachometer
- 18. Turn Coordinator
- 19. RGT / CHT
- 20. Heading Indicator

- 21. Circuit Breakers/Light Switches
- 22. Vertical Speed Indicator
- 23. Instrument Lighting Dimmer
- 24. Carburetor Heat
- 25. Throttle Control
- 26. Course Deviation Indicator
- 27. Mixture Control
- 28. Wing Flap Switch

ENGINE OIL SYSTEM

Oil for the engine lubrication is supplied from a sump at the bottom of the engine. The capacity of the enfine sump is seven quarts (one additional quart is contained in the full flow oil filter. Oil is drawn from the sump through an oil suction strainer screen into the enginedriven oil pump. From the pump oil is routed to a bypass valve. If the oil is cold, the bypass valve allows the oil to bypass the oil cooler and go directly from the pump to the full flow oil filter. If the oil is hot, the bypass valve routes the oil out of the accessory housing and into a flexible hose leading to the oil cooler on the right rear engine baffle. Pressure oil from the cooler returns to the accessory housing where it passes through the full flow oil filter. The filter oil then enters a pressure relief valve which regulates engine oil pressure by allowing excessive oil to return to the sump while the balance of the oil is circulated to various engine parts for lubrication. Residual oil is returned to sump by gravity flow.

An oil filter cap/oil dipstick is located at the right rear of the engine. The filler cap/dipstick is accesible through an access door on the top right side of the engine cownling. The engine should not be operated on less that five quarts of oil. For extended flight fill to seven quarts (dipstick indication only).

IGNITION-STARTER SYSTEM

Engine ignition is provided by two engine-driven magnetos, and two spark plugs in each cylinder. The right magneto fires the lower right and upper right spark-plugs. Normal operation is conducted with both magnetos due to the more complete burning of the fuel-air mixture with dual ignition. Ignition and starter operation is controlled by a rotary type switch located on the left switch and control panel. The switch is labelled clockwise: OFF, R, L, BOTH and START. The engine should be operated on BOTH magnetos except for magnetochecks. The R and L position are for checking purposes and emergency use only. When the switch is rotated to the spring-loaded STARTposition, the starter contactor is energized and the starter will crank the engine. When the switch is released, it will automatically return to the BOTHposition.

AIR INDUCTION SYSTEM

The engine air induction system receives ram air through an intake in the lower front portion of the engine cowling. The intake is covered by an air-filter which removes dust and other foreign matter from the induction air. Airflow passing through the filter enters an airbox. After passing through the airbox, induction air enters the inlet in the carburetor which is under the engine, and is then ducted to the engine cylinders through intake manifold tubes. In the event carburetor ice is encountered or the intake filter becomes blocked, alternate heated air can beobtained from a shroud around an exhaust riser through a duct to a valve in the airbox operated by the carburetor heat control on the instrument panel. Heated air from the shroud is obtained from an unfiltered outside source. Use of full carburetor heat at full throttle will result in a loss of approximately 75 to 150 RPM.

CARBURETOR AND PRIMING SYSTEM

The engine is equipped with an up-draft, float-type, jetcarburetor mounted on the bottom of the engine. The carburetor is equipped with an enclosed accelerator pump, an idle cut-off mechanism and a manual mixture control. Fuel is delivered to the carburetor by gravity flow from the fuel system. In the carburetor, fuel is atomized, properly mixed with intake air and delivered to the cylinders through intake manifold tubes. The proportion of atomized fuel to air may be controlled, within limits, by the mixture control on the instrument panel. For easy starting in cool weather, the engine is equipped with a manual primer. The primer is actually a small pump which draws fuel from the fuel strainer when the plunger is pulled out, and injects it into the cylinder intake ports when the plunger is pushed back in.

COOLING SYSTEM

Ram air for engine cooling enters through two intake openings in the front of the engine cowling. The cooling air is directed around the cylinders and other areas of the engine by baffling, and is then exhausted through an opening at the bottom aft edge of the cowling. No manual cooling system control is provided.

PROPELLER

The airplane is equipped with a two-bladed, fixed-pitch, one-piece

forged aluminium alloy propeller wich is anodized to retard corrosion. The propeller is 75 inches in diameter.

FUEL SYSTEM

The airplane may be equipped with a standard fuel system or either of two long range systems. Each system consists of two vented fuel tanks (one tank each wing), a four-position selector valve, fuel strainer, manual primer, and carburetor. The 68gallon long-range system utilizes integral tanks and the other two systems employ removable aluminium tanks. Fuel flows by gravity from the two wing tanks to a four-position selector valve labelled BOTH, LEFT, RIGHT and

FUEL TANKS	FUEL	TOTAL FUEL	TOTAL	TOTAL
	LEVEL		UNUSABLE	USABLE
>				
STANDARD	FULL	43	3	40
LONG RANGE	FULL	54	4	50
LONG RANGE	FULL	68	6	62
(INTEGRAL)				

OFF. With the selector valve in either the BOTH, LEFT or RIGHT position, fuel flows through a strainer to the carburetor. From the carburetor, mixed fuel and air flows to the cylinders through

intake manifold tubes. The manual primer draws its fue from the fuel strainer and injects it into the cylinder intake ports. Fuel system venting is essential to system operation. Blockage of the system will result in decreasing fuel flow and eventual engine stoppage. Venting is accomlished b y a n interconnecting line from the right fuel tank to the left fuel tank. The left fuel tank is vented overboard through a vent line, equipped with a check valve, which protrudes from the bottom surface of the left wing near the wing strut. The right fuel tank filler cap is also vented.

When long range integral tanks are installed, the airplane may be serviced to a reduced capacity to permit heavier cabin loadings. This is accomplished by filling each tank to the bottom edge of the fuel filler collar, thus giving a reduced fuelload of 24 gallons in each tank.

Fuel Quantity is measured by two float-type fuel quantity transmitters and indicated by two elictrically-operated fuel quantity

indicators on the left side of the instrument panel. An empty tank is indicated by a red line and the letter E. When an indicator shows an empty tank, approximately 1.5 gallons remain in a standard tank, and 2 gallons remain in a long range tank (3 gallons when long range integral tanks are installes) as unusable fuel. The indicators cannot be relied upon for accurate readings during skids, slips, or unusual attitudes. The fuel selector valve should be in BOTH position for takeoff, climb, landing and maneuvers that involve prolonged slips or skids. Operation from either LEFT or RIGHT tank is reserved for cruising flight.

NOTE1:

When the fuel selector valve handle is in the BOTH position in cruising flight, unequal fuel flow from each tank may occur if the

BRAKE SYSTEM

The airplane has a singe -disc, hydraulically-actuated brake on ech main landing gear wheel. Each brake is connected, by a hydraulic line, to a master cylinder attached to each of the pilot's rudder pedals. The brakes are operated by applying pressure to the top of either the left (pilot's) or right (copilot's) set of rudder pedals, which are interconnected. When the airplane is parked, both main wheel brakes may be set by utilizing the parking brake which is operated by a handle under wings are not maintained exactly level. Resulting wing heaviness can be alleviated gradually by turning the selector valve handle to the tank in the heavy wing.

NOTE2:

When the fuel tanks are 1/4 full or less, prolonged uncoordinated flight such as slips or skids can cover the fuel tank outlets. Therefor, if operating with one fuel tank dry or if operating on LEFT or RIGHT tank when 1/4 full or less, do not allow the airplane to remain in uncoordinated flight for periods in excess of 30 seconds.

NOTE3:

It is not practical to measure the time required to consume all of the fuel in one tank, and, after switching to the opposite tank, expect an equal duration from the remaining fuel. The airspace in both fuel tanks is interconnected by a vent line and, therefor, some sloshing of fuel between tanks can be expected when the tanks are nearly full and the wings are not level.

The fuel system is equipped with drain valves to provide a means for the examination of fuel in the system foe contamination and grade. The system should be examined before the first flight of every day and after each refueling, by using the sampler cup provided to drain fuel from the wing tank sumps, and by utilizing the fuel strainer drain under an access door on the aft right side of the top engine cowling. If takeoff weight limitations for the next flight permit, the fuel tanks shoul be filled after each flight to prevent condensation.

the left side of the instrument panel. To apply the parking brake, set the brakes with the rudder pedals, pull the handle aft, and rotate it 90° down. For maximum brake life, keep the brake system properly maintained, and minimize brake usage during taxi operations and landings.

Some of the symtoms of impending brake failure are: gradual decrease in braking action after brake application, noisy or dragging brakes, soft or spongy pedals, and excessive travel and weak braking action. If any of these symptoms appear, the brake system is in need of immediate attention. If, during taxi or landing roll, braking action decreases, let up on the pedals and then re-apply the brakes with heavy pressure. If the brakes become spongy or pedal travel increases, pumping the pedals should build braking pressure. If one brake becomes weak or fails, use the other brake sparingly while using opposite rudder, as required, to offset the good brake.

ELECTRICAL SYSTEM

The airplane is equipped with a 28-volt, direct-current, electrical system. The system is powered by a belt-driven, 60-amp alternator and a 24-volt battery, located on the left forward side of the firewall. Power is supplied to most general electrical and all

avionics circuits through the primary bus bar and the avionics bus bar, which is interconnected by an avionics power switch. The primary bus is on anytime the master switch is turned on, and is not affected by starter or external power usage. Both bus bars are on anytime the master and avionics power switches are turned on.

CAUTION:

Prior to turning the master switch on or off, starting the engine or applying an external power

source, the avionics power switch, labeled AVIONICS POWER, should be turned off to prevent any harmful transient voltage from damaging the avionics equipment.

MASTER SWITCH

The master switch is a split rocker-type switch labeled MASTER, and is ON in the up position. The right half of the switch labeled BAT controls all the electrical power to the airplane. The left half, labeled ALT controls the alternator. Normally, both sides of the master switch should be used simultaneously; however, the BAT side of the switch could be turned on seperately to check equipment while on the ground. To check or use avionics equipment or radios while on the ground, the avionics power switch must also be turned on. The ALT side of the switch, when placed in the OFF position, removes the alternator from the electrical system. While this switch in the OFF position, the entire electrical load is placed on the battery. Continued operation with the alternator switch in the OFF position will reduce battery power low enough to open the battery contactor, remove power from the alternator field, and prevent alternator restart.

AVIONICS POWER SWITCH

Electrical power from the airplane primary bus to the avionics bus is controlled by a toggle switch/circuit braker labeled AVIONICS POWER. The switch is located on the left side of the switch and control panel and is ON in the up position. With the switch in the OFF position, no electrical power will be applied to the avionics equipment, regardless of the position of the master switch or the individual equipment switches. The avionics power switch also functions as a circuit breaker. If an electrical malfunction should occur and cause the circuit braker to open, electrical power to the avionics equipment will be interrupted and the switch will automatically move to OFF position. If this occurs, allow the circuit breaker to cool for about two minutes before placing the switch in the ON position again. If the circuit breaker opens again, do not reset it. The avionics power switch should be placed in the OFF position prior to turning the master switch ON or OFF, starting the engine, or applying an external power sourve, and may be utilized in place of the individual avionics equipment switches.

AMMETER

The ammeter, located on the lower left side of the instrument panel, indicates the amount of current in amperes, from the alternator to the battery or from the battery to the airplane electrical system. When the engine is operating and the master switch is turned on, the ammeter indicates the charging rate applied to the battery. In the event the alternator is not functioning or the elctrical load exceeds the output of the alternator, the ammeter indicates the battery discharge rate.

ALTERNATOR CONTROL UNIT AND LOW-VOLTAGE WARNING LIGHT

The airplane is equipped with a combination alternator regular high-low voltage control unit mounted on the engine side of the firewall and a red warning light, labeled LOW VOLTAGE, on the left side of the instrument panel below the ammeter. In the event an over-voltage condition occurs, the alternator control unit automatically removes alternator field current which shuts down the alternator. The battery will then supply system current as shown by a discharge rate on the ammeter. Under these conditions, depending on electrical system load, the low-voltage warning light will illuminate when system voltage drops below normal. The alternator control unit may be reset by turning the master switch

off and back on again. If the warning light does not illuminate again, a malfunction has occured, and the flight should be terminated as soon as practical.

CIRCUIT BREAKERS AND FUSES

Most of the elecrical circuits in the airplane are protected by ",push-to-reset" type circuit breakers mounted on the left side of the switch and control panel. However, circuit breakers protecting the alternator output and the strobe light/avionics cooling fan circuits are the "pulloff" type. In addition to the individual circuit breakers, a toggle switch/circuit breaker, labeled AVIONICS POWER, on the left side of the switch and control panel, also protects the avionics system. The control wheel map light (if installed) is protected by the NAV LT circuit breaker and a fuse behind the instrument panel. Electrical circuits which are not protected by circuit breakers are the battery contactor closing (external power) circuit, clock circuit, and flight hour recorder circuit. These circuits are protected by fuses mounted adjacent to the battery.

LIGHTING

Conventional navigation lights are located on the wing tips and top of the rudder. A single landing light is located in the cowl nose cap. Dual landing/taxi lights are available and also located in the cowl nose cap. Additional lighting is available and includes a flashing beacon mounted on top of the vertical fin, a strobe light on each wing tip, and a courtesy light recessed into the lower surface of each wing slightly outboard of the cabin doors.

The flashing beacon should not

be used when flying through clouds or overcast; the flashing light reflected from the water droplets or particles in the atmosphere, particularly at night can produce vertigo and loss of orientation.

STALL WARNING SYSTEM

The airplane is equipped with a pneumatic-type stall warning system consisting of an inlet in the leading edge of the left wing and an air-operated horn near the upper left corner of the windshield. As the airplane approaches a stall, the low pressure on the upper surface of the wings moves forward around the leading edge of the wings. This low pressure creates a differential pressure in the stall warning system which draws air through the warning horn, resultig in an audible warning at 5 to 10 knots above stall.

AVIONICS SUPPORT EQUIPMENT

If the airplane is equipped with avionics, various avionics support equipment may also be installed. Equipment available includes an avionics cooling fan, microphoneheadset installations and control surface dischargers.

STATIC DISCHARGERS

If frequent IFR flights are planned, installation of wick-type static dischargers is recommended to improve radio communications during flight through dust or various forms of precepitation. Under these conditions, the build-

up and discharge of static electricity from the trailing edges of the wings, rudder, elevator, propeller tips and radio antennas can result in loss of usable radio signals on all communications and navigation equipment. Usually the ADF is first to be affected and VHF communication equipment is the last to be affected.

PITOT STATIC SYSTEM AND INSTRUMENTS

The pitot-static system supplies ram air pressure to the airspeed indicator and static pressure to the air speed indicator, vertical speed indicator and altimeter. The system is composed of either an unheated or heated pitot tube mounted on the lower surface of the left wing, an external static port on the lower left side of the forward fuselage, and the associated plumbing necessary to connect the instruments to the sources. The heated pitot system (if installed) consists of a heating element in the pitot tube, a rocker switch labeld PITOT HT, a 5-amp circuit breaker, and associated wiring.

A static pressure alternate source

valve may be installed on the switch and control panel below the throttle, and can be used if the external static pressure source is malfunctioning.

AIRSPEED INDICATOR

The airspeed indicator is calibrated in knots. Limitation and range markings include the white arc, green arc, yellow arc and a red line.

VERTICAL SPEED INDICATOR

The vertical speed indicator depicts airplane rate of climb and descent in feet per minute. The pointer is actuated by atmospheric pressure changes resulting from changes of altitude as supplied by static source.

ALTIMETER

Airplane altitude is depicted by a barometric type altimeter. A knob near the lower left portion of the indicator provides adjustment of the instrument's barometric scale to the current altimeter setting.

VACUUM SYSTEM AND INSTRUMENTS

An engine-driven vacuum system provides the suction necessary to operate the attitude indicator and directional indicator. The system consistes of a vacuum pump mounted on the engine, a vacuum relief valve and vacuum system airfilter on the left side of the firewall below the instrument panel, and instruments on the left side of the instrument panel.

ATTITUDE INDICATOR

The attitude indicator gives a visual indication of flight attitude. Bank attitude is presented by a pointer at the top of the indicator relative to the bank scale which has index marks at 10° , 20° , 30° , 60° and 90° either side of the center mark. Pitch and roll attitudes are presented by a miniature airplane superimposed over a symbolic horizon area divided into two sections by a white horizon bar.

DIRECTIONAL INDICATOR

A directional indicator displays airplane heading on a compass card in relation to a fixed simulated airplane image and index. The indicator will precess slightly over a period of time. Therefor the compass card should be set in accordance with the magnetic compass just prior to takeoff, and occasionally readjusted on extended flights.

SUCTION GAGE

The suction gage is calibrated in inches mercury and indicates suction available for operation of the attitude and directional indicators.

SUPPLEMENT

Digital Clock/Timer	1
•Cessna 400 Glide Slope	1
•Autopilot	2
Autopilot Procedures	2
-Before Takeoff and Landing	2
-Inflight Wings Leveling	2
-NAV Intercept (VOR/LOC)	3
-NAV Tracking (VOR/LOC)	3
-Heading Select	3

SUPPLEMENTS PAGE 1

DIGITAL CLOCK/TIMER

The Astro Tech LC-2 Quartz Chronometer is a precision, solid state time keeping device which will display to the pilot the timeof-day, the calendar date, and the elapsed time interval between a series of selected events, such as in-flight check points or legs of a cross-country flight, etc. These three modes of operation fuction independently and can be alternately selected for viewing in the liquid crystal display (LCD) on the front face of the instrument. Four push button type switches directly below the display control all time keeping functions.

The digital display features an

internal light to ensure good visibility under low cabin lighting conditions or at night.

Buttons: ST/SP Starts and Stops the Stopwatch

RST Resets the Stopwatch

Lower MODE Toggles between Stopwatch / Simulation Speed / Zoom Factor

Upper Mode Switches between Local Time and Zulu Time (indicated by a yellow spot)

CESSNA 400 GLIDE SLOPE

The Cessna 400 Glide Slope is an airborne navigation receiver which receives and interprets glide slope signals from a groundbased Instrument Landing System (ILS). It is used with the localizer function of a VHF navigation system when making instrument approaches to an airport. The glide slope provides vertical path guidance while the localizer provides horizontal track guidance. The Cessna 400 Glide Slope system consists of a remotemounted receiver coupled to an existing navigation system, a panel-mounted indicator and an externally mounted antenna. Operation of the Cessna 400 Glide Slope system is controlled by the associated navigation system.

TO RECEIVE GLIDE SLOPE SIGNALS

[1] NAV Frequency Select Knob

--- Select desired localizer

AUTOPILOT

GENERAL INFORMATION

The installed autopilot is a singleaxis (aileron control) autopilot with an additional altitude hold and glide slope hold function. Roll and yaw motions of the airplane are sensed by the turn coordinator gyro. Deviation from the selected heading are sensed by the directional gyro. The computer-amplifier electronically computes the necessary correction and signals the actuator to move the ailerons to maintain the airplane in the commanded lateral attitude or heading.

BUTTONS

ON/OFF

The autopilot can be activated via the on/off switch located to the left of the large center knob. The switch will turn to the offposition when the battery is switched off.

HDG SEL

By engaging this button the airplane will turn to and maintain the heading selected via the bug on the directional indicator.

NAV TRK

By engaging this button the airplane will hold a radial selected on NAV1. It is possible to engage both HDG SEL and NAV TRK simultanously. HDG SEL is given priority until a VOR radial is intercepted, at which point the HDG SEL button will disengage and the aircraft will turn to and track the radial. This mode is generally unavailable if an active frequency is not selected.

HI SENS

By depressing this button the aircraft will track a localizer frontcourse and also the glide slope.

BCK CRS

This mode permits tracking of the back course localizer. generally unavailable if an active

frequency is not selected.

CENTER BANK KNOB

The center knob provides variable aileron control to execute a standard rate turn. In the default state, the knob is off (pushed in). Clicking on the center of the knob will pull it in the on position, engaging the wing leveler. With the knob pulled out moving it into the right position the aircraft will enter a standard rate turn to the right. Moving it into the left position the aircraft will enter a standard rate turn to the left. Re-centering the knob from either the left or right position will re-engage the wing leveler.

AUTOPILOT PROCEDURES

BEFORE TAKE-OFF AND LANDING

[1]

A/P on/off switch --- OFF

INFLIGHT WINGS LEVELING

[1]	Rudder Trim	 ADJUST for zero slip
[2]	A/P turn knob	 CENTER and PULL out
[3]	A/P on/off switch	 ON

NAV IN	NTERCEPT (VOR/LOC)	
[1]	A/P turn knob	 CENTER and PULL
[2]	NAV Receiver OBS	 SET desired course
[3]	Heading Selector	 ROTATE bug to selected course
[4]	Directional Gyro	 SET for magnetic heading
[5]	HI SENS button	 PUSH for localizer intercepts
[6]	BCK CRS button	 PUSH ONLY if inter- cepting front course outbound or back course inbound
[7]	A/P turn knob	 PUSH

CAUTION:

With BCK CRS button pushed in and localizer frequency selected, the CDI on selected nav radio will be reversed even when the autopilot switch is OFF.

NOTE:

Airplane will automatically turn to a 45° intercept angle.

NAV T	RACKING (VOR/LOC)		
[1]	NAV TRK button	PU an is he	USH when CDI centers nd airplane heading within 10° of course eading
[2]	HI SENS button	Di 01	sengage for enroute mni tracking

/												
	ш	E	Λ	n	NI	^	C	С		E.	СТ	
	п	E	А	υ		U.	Э	E	L	E	CI.	

E	1]	Directional Gyro	 SET to magnetic heading
[2]	Heading Selector	 ROTATE bug to desired
			heading
Ε	3]	HD SEL Button	 PUSH